Математические заметки

Том 106 выпуск 6 декабрь 2019

УДК 512.7

О нерациональных слоях в расслоениях на поверхности дель Пеццо над кривой

К.В. Логинов

В этой заметке мы рассматриваем трехмерные расслоения на поверхности дель Пеццо с нерациональным центральным слоем. Предполагая, что особенности тотального пространства не хуже, чем обыкновенные двойные точки, при помощи конструкции замены базы мы показываем, что существует взаимно-однозначное соответствие между такими расслоениями и некоторыми неособыми расслоениями на поверхности дель Пеццо с действием циклической группы.

Библиография: 16 названий.

Ключевые слова: расслоения Мори, поверхности дель Пеццо, рациональность.

DOI: https://doi.org/10.4213/mzm12257

Введение. Хорошо известно, что кубическая поверхность дель Пеццо может вырождаться в конус над эллиптической кривой в неособом семействе. Мы изучаем условия, при которых поверхность дель Пеццо произвольной степени может вырождаться в нерациональную поверхность в "достаточно хорошем" семействе. Более точно, мы рассматриваем расслоения на поверхности дель Пеццо в смысле программы минимальных моделей, см. определение 1.1. В частности, тотальное пространство таких расслоений должно иметь не хуже, чем терминальные особенности. Основной инвариант таких расслоений – степень общего слоя $K_{X_\eta}^2$. Так как общий слой неособ, имеем $1\leqslant K_{X_\eta}^2\leqslant 9$. Вопрос рациональности слоев локален по базе, поэтому мы рассматриваем расслоения над ростком кривой.

Если мы применим программу минимальных моделей к неособому рационально связному многообразию U над полем комплексных чисел, то получим бирациональное ему многообразие X со структурой расслоения Мори. Это значит, что существует морфизм $\pi\colon X\to B$ со связными слоями, π -обильным антиканоническим классом $-K_X$ и с условием $\dim B<\dim X$. Если $\dim B=0$, то X является многообразием Фано. Проблема рациональности для таких многообразий далека от своего решения. Результаты о рациональности в гладком случае см. в [1; гл. 12].

Работа частично финансировалась в рамках программы государственной поддержки ведущих университетов Российской Федерации "5-100", Фондом Саймонса, а также Фондом развития теоретической физики и математики "БАЗИС".

Если $\dim B=2$, то π называется \mathbb{Q} -расслоением на коники. Общий слой такого расслоения — неособая рациональная кривая, специальные слои представляют собой деревья рациональных кривых, быть может, с кратностями. Таким образом, проблема рациональности для слоев тривиальна. Мы рассматриваем случай $\dim B=1$. В этом случае π называется расслоением на поверхности дель Пеццо. Общий слой π рационален. Но специальный слой может быть нерациональным. Легко видеть, что он является поверхностью, бирационально расслоенной над кривой C рода g(C)>0.

В этой работе мы показываем, что свойства такого расслоения с нерациональным центральным слоем, например, значение g(C), зависят от степени слоя и от особенностей тотального пространства X. В предложении 1.3 доказывается, что если X неособо (соответственно, имеет терминальные горенштейновы особенности), то $K_{X_{\eta}}^2 \leqslant 3$ (соответственно, $\leqslant 4$) и нерациональный слой изоморфен обобщенному конусу над эллиптической кривой. Этот факт элементарно следует из классификации горенштейновых поверхностей дель Пеццо [2]. Из замечания 1.2 следует, что в терминальном горенштейновом случае любой слой приведен и неприводим, и если слой нерационален, то он нормален. С другой стороны, в терминальном негоренштейновом случае возможны кратные слои. В работе [3] показано, что их кратность не превосходит шести.

В теореме 2.3 мы используем конструкцию замены базы, чтобы показать, что существует взаимно-однозначное соответствие между расслоениями на поверхности дель Пеццо с нерациональным центральным слоем и некоторыми неособыми μ_n -расслоениями на поверхности дель Пеццо, а также явно описываем центральный слой таких расслоений.

Этот результат показывает, что нерациональные слои терминальных горенштейновых расслоений на поверхности дель Пеццо образуют очень ограниченный класс. С другой стороны, если X имеет хуже, чем терминальные особенности, то нерациональные слои неограничены, см. пример 1.7. Также существуют примеры нерациональных слоев, бирационально расслоенных над кривой C рода g(C)=2,3,4. Неизвестно, можно ли добиться g(C)>4 в этом случае, см. вопрос 1.6.

Далее, мы рассматриваем расслоения с простейшими особенностями – обыкновенными двойными точками. Используя конструкцию замены базы, мы классифицируем такие расслоения в терминах неособых μ_n -расслоений на поверхности дель Пеццо, см. теорему 3.3. Оказывается, что в этом случае $K_{X_n}^2=1$ или 4.

Другие результаты о рациональности в семействах см. в [4]–[6]. Классификация нерациональных поверхностей дель Пеццо изложена в [2], [7].

1. Предварительные сведения. Мы работаем над полем комплексных чисел. Мы используем терминологию и обозначения программы минимальных моделей, см., например, [8], [9].

Определение 1.1. Пусть X — трехмерное нормальное проективное многообразие с \mathbb{Q} -факториальными терминальными особенностями, и пусть B — неособая кривая. Предположим, что существует проективный морфизм $\pi\colon X\to B$ со следующими свойствами:

- (i) π имеет связные слои;
- (ii) $-K_X$ является π -обильным (соответственно, π -численно эффективным и π объемным);
- (iii) π является экстремальным стягиванием, т.е. $\rho(X/B) = 1$.

Тогда $\pi\colon X\to B$ называется расслоением на поверхности дель Пеццо (соответственно, слабым расслоением на поверхности дель Пеццо). Степенью расслоения π называется степень общего слоя X_η . Так как X терминально, то X_η – неособая поверхность дель Пеццо.

Будем говорить, что расслоение на поверхности дель Пеццо $\pi\colon X\to B$ является неособым (соответственно, горенштейновым), если многообразие X неособо (соответственно, горенштейново). Если в определении выше X является аналитическим пространством, а отображение π – собственным, будем называть $\pi\colon X\to B$ аналитическим расслоением на поверхности дель Пеццо. Если X рассматривается над ростком кривой $o\in B$, мы будем пользоваться обозначением

$$\pi\colon X\to B\ni o.$$

Пусть G – группа, действующая на расслоении π . Тогда мы можем определить G-расслоение на поверхности дель Пеццо, если в определении 1.1 потребовать, чтобы X было $G\mathbb{Q}$ -факториальным (т.е., любой G-инвариантный дивизор Вейля является дивизором \mathbb{Q} -Картье), и $\rho^G(X/B)=1$. Мы будем работать с μ_n -расслоениями на поверхности дель Пеццо, где μ_n – циклическая группа, содержащая n элементов. Зафиксируем примитивный корень из единицы степени n и обозначим его через ζ_n .

Замечание 1.2. Рассмотрим горенштейново расслоение $\pi\colon X\to B\ni o$ на поверхности дель Пеццо над ростком кривой. Обозначим его центральный слой $\pi^{-1}(o)$ через F. Так как выполнено $\rho(X/B)=1$, то F неприводим. Так как X горенштейново, F приведен [10; 5.1]. Предположим, что F нерационален. Тогда F нормален согласно [11], [12].

ПРЕДЛОЖЕНИЕ 1.3. Рассмотрим горенштейново расслоение $\pi\colon X\to B\ni o$ на поверхности дель Пеццо над ростком кривой. Предположим, что его центральный слой $F=\pi^{-1}(o)$ нерационален. Тогда F – обобщенный конус над эллиптической кривой и $K_F^2\leqslant 4$. Если X неособо, то $K_F^2\leqslant 3$.

Доказательство. Первое утверждение следует из классификации горенштейновых поверхностей дель Пеццо, см., например, [2]. Поверхность F имеет одну простую эллиптическую особенность x_0 . Рассмотрим минимальное разрешение ϕ : $T \to F$. Имеем

$$K_T = \phi^* K_F - E_0,$$

где E_0 – неособая эллиптическая кривая. Отсюда

$$K_T^2 = K_F^2 + E_0^2 = d + E_0^2.$$

По формуле Нётера $K_T^2 + \chi_{\rm top}(T) = 12\chi(\mathscr{O}_T) = 0$ и $\chi_{\rm top}(T) = 0$, так как T – линейчатая поверхность над эллиптической кривой. Таким образом, $d = -E_0^2$. В [13; 4.57] показано, что размерность касательного пространства к F в точке x_0 равна $\max(3, -E_0^2)$. Если X горенштейново, оно имеет гиперповерхностные особенности, следовательно, $-E_0^2 = d \leqslant 4$. Если X неособо, то $-E_0^2 = d \leqslant 3$. Предложение доказано.

Следующий пример показывает, что случай d=4 реализуется.

Пример 1.4. Пусть X задано уравнениями

$$x_1^2 + x_2^2 + x_3^2 + x_4^2 + tx_5^2 = 0,$$

$$a_1 x_1^2 + a_2 x_2^2 + a_3 x_3^2 + a_4 x_4^2 + tx_5^2 = 0$$

в $\mathbb{P}^4 \times \mathbb{A}^1_t$, где $a_i \in \mathbb{C}$. Несложно проверить, что для общего выбора a_i многообразие X имеет одну особую точку типа cA_1 , и слой F над $0 \in \mathbb{A}^1_t$ является конусом над эллиптической кривой.

Существуют примеры негоренштейновых расслоений с центральным слоем, бирациональным $\mathbb{P}^1 \times C$ с g(C) > 1.

Пример 1.5. (i) Пусть

$$X = (f_6(x, y, w) + tz^3 = 0) \subset \mathbb{P}(1, 1, 2, 3) \times \mathbb{A}_t^1$$

где (x, y, z, w) имеют веса (1, 1, 2, 3), полином f_6 имеет степень 6 и является общим. Морфизм $\pi\colon X\to B=\mathbb{A}^1_t$ индуцирован проекцией на второй сомножитель. Многообразие X имеет одну терминальную особенность типа (1/2)(1,1,1). Общий слой является неособой поверхностью дель Пеццо степени 1. Центральный слой $F=\pi^{-1}(0)$ – конус над гиперэллиптической кривой C рода 2.

(іі) Пусть

$$X = (f_4(x, y, z) + tw^2 = 0) \subset \mathbb{P}(1, 1, 1, 2) \times \mathbb{A}_t^1,$$

где (x,y,z,w) имеют веса (1,1,1,2). Многообразие X имеет одну терминальную особенность типа (1/2)(1,1,1). Общий слой является неособой поверхностью дель Пеццо степени 2. Центральный слой $F=\pi^{-1}(0)$ – конус над плоской квартикой C. Таким образом, g(C)=3.

(ііі) Пусть

$$X = (f_6(x, y, z) + tw^2 = 0) \subset \mathbb{P}(1, 1, 2, 3) \times \mathbb{A}_t^1,$$

где (x,y,z,w) имеют веса (1,1,2,3). Многообразие X имеет одну терминальную особенность типа (1/3)(1,1,2). Общий слой является неособой поверхностью дель Пеццо степени 1. Центральный слой F — конус над тригональной кривой C рода 4.

В рассмотренных выше примерах центральный слой F нормален. Однако для специального выбора полинома f_i можно добиться того, чтобы F был ненормальным и нерациональным. В горенштейновом случае такое невозможно по замечанию 1.2. Следующий естественный вопрос был задан Дж. Бланком:

Вопрос 1.6. Существует ли расслоение на поверхности дель Пеццо $\pi\colon X\to B$ такое, что его слой бирационален $\mathbb{P}^1\times C$ с условием g(C)>4?

В данный момент ответ на этот вопрос неизвестен. Терминальные особенности являются существенным ограничением, как видно из следующего примера.

ПРИМЕР 1.7. В этом примере мы рассмотрим расслоение, имеющее особенности хуже, чем терминальные. Определим $\pi \colon X \to B$ следующим образом:

$$X = (f_n(x, y, z) + tw = 0) \subset \mathbb{P}(1, 1, 1, n) \times \mathbb{A}_t^1,$$

где координаты x, y, z, w имеют веса (1,1,1,n), полином f_n выбран общим и имеет степень n, а π индуцировано проекцией на второй сомножитель. Ясно, что X имеет одну особую точку (1/n)(1,1,1). В частности, X лог-терминально. Общий слой изоморфен \mathbb{P}^2 . Слой $F = \pi^{-1}(0)$ является конусом над плоской кривой степени n. Аналогично можно построить лог-терминальные вырождения к конусу над кривой сколь угодно большого рода в расслоениях на поверхности дель Пеццо любой степени $1 \leq d \leq 9$, см. [14; 3.9].

2. Неособые расслоения. Рассмотрим расслоение на поверхности дель Пеццо $\pi\colon X\to B\ni o$ над ростком кривой. Предположим, что оно неособо, и центральный слой $F=\pi^{-1}(o)$ нерационален. Тогда $K_F^2\leqslant 3$ по предложению 1.3. Для классификации таких расслоений нам потребуется конструкция замены базы.

Конструкция 2.1. Согласно [2] поверхность F имеет одну простую эллиптическую особенность x_0 . Согласно [13; 4.57] существует взвешенное раздутие, индуцирующее минимальное разрешение такой особенности. Обозначим это раздутие через $\psi\colon Z\to X$, его веса через (c_1,c_2,c_3) , где c_i – некоторые числа, которые мы укажем позднее. Тогда $F_Z=\psi_*^{-1}F$ неособо. Имеем

$$K_{F_Z} = \psi|_{F_Z}^* F - E|_{F_Z}.$$

Заметим, что $E|_{F_Z}$ – приведенная неприводимая неособая эллиптическая кривая. Обозначим ее через C. Имеем $F_Z=\psi^*F-nE$ для $n\geqslant 2$ и $E\simeq \mathbb{P}(c_1,c_2,c_3)$. Тогда

$$K_Z = \psi^* K_X + (n-1)E, \qquad n = c_1 + c_2 + c_3.$$

После раздутия ψ многообразие Z может иметь циклические фактор-особенности. Тем не менее, F_Z не будет через них проходить. Действительно, пусть z_0 — особая точка на Z, и $z_0 \in F_Z$. Так как z_0 — циклическая фактор-особенность, \mathbb{C}^3 накрывает аналитическую окрестность U точки z_0 . Это накрытие индуцирует неразветвленное накрытие окрестности $F_Z \cap U - \{z_0\}$. Но F_Z неособо, поэтому $\pi_1(F_Z \cap U - \{z_0\}) = 0$. Противоречие.

Сделаем замену базы. Выберем локальную координату t в точке $o \in B$ и рассмотрим коммутативную диаграмму

$$W \xrightarrow{h} Z$$

$$\downarrow^{\pi_W} \pi \downarrow$$

$$B' \xrightarrow{\alpha} B$$

где $B'\simeq B,\, \alpha\colon t\mapsto t^n$ и W – нормализация $Z\times_B B'$. В общей точке E многообразие Z изоморфно

Spec
$$\mathbb{C}[x, y, z, t]/(t - z^n)$$
,

а слой $\pi_Z^{-1}(o)$ дается уравнением t=0. После замены базы

$$\operatorname{Spec} \mathbb{C}[x, y, z, t]/(t^n - z^n)$$

имеет особенности в коразмерности 1. После нормализации морфизм h этален в окрестности общей точки $E_W:=h^{-1}(E)$. Аналогично можно проверить, что h

разветвлен в $F_W:=h^{-1}(F_Z)$ и всех особых точках Z. Заметим, что центральный слой $\pi_W^{-1}(o)$ приведен и приводим:

$$\pi_W^{-1}(o) = F_W + E_W,$$

где E_W накрывает E, и F_W изоморфно F_Z . Более точно, $h|_{E_W}$ тотально разветвлено в $E_W \cap F_W =: C_W$. Следовательно, F_W неособо и F_W пересекает E_W трансверсально. Группа Галуа μ_n накрытия h действует на W, сохраняя центральный слой.

Сделаем μ_n -эквивариантное стягивание поверхности F_W (см. вычисления ниже) и получим μ_n -расслоение на поверхности дель Пеццо $\pi_V \colon V \to B$ с неособым рациональным центральным слоем. Конструкция показана в следующей диаграмме:

$$F_W + E_W \subset W \xrightarrow{h} Z \supset F_Z + nE$$

$$\downarrow^{\tau} \qquad \qquad \psi \downarrow$$

$$E_V \subset V \qquad \qquad X \supset F$$

$$\downarrow^{\pi_V} \qquad \qquad \pi \downarrow$$

$$B' \xrightarrow{\alpha} B$$

$$(2.1) \quad \{e$$

Вычисление 2.2. Как и выше, рассмотрим минимальное разрешение $\phi\colon T\to F$. Обозначим через f_T слой линейчатой поверхности T и через f_Z – слой $F_Z\simeq F_T$. Положим $f:=\psi(f_Z)$. Напишем

$$K_F \cdot f = \phi^* K_F \cdot \phi^* f = \phi^* K_F \cdot f_T = (K_T + E_0) \cdot f_T = -2 + 1 = -1,$$

 $K_Z \cdot f_Z = (\psi^* K_X + (n-1)E) \cdot f_Z = K_X \cdot f + n - 1 = K_F \cdot f + n - 1 = n - 2.$

Мы хотим стянуть поверхность F_W . Вычислим $K_W \cdot f_W$, где f_W – слой поверхности $F_W \simeq F_Z$. Так как h тотально разветвлено в F_W , по формуле Гурвица имеем

$$K_W = h^* K_Z + (n-1) F_W.$$

Так как $(F_W + E_W) \equiv 0$ над B, то

$$K_W \cdot f_W = (h^* K_Z + (n-1)F_W) \cdot f_W = K_Z \cdot f_Z - (n-1)E_W \cdot f_W$$

= $n - 2 - (n-1) = -1$.

Поэтому F_W может быть стянута в неособую кривую. Обозначим морфизм стягивания через $\tau\colon W\to V$. По формуле Гурвица для $h|_{E_W}$ имеем

$$K_{E_W} = h|_{E_W}^* \left(K_E + \frac{n-1}{n} R \right), \qquad K_E = -(c_1 + c_2 + c_3)H = -nH,$$

где $R \sim bH$ — дивизор ветвления, H — положительная образующая группы классов $\operatorname{Cl} E \simeq \mathbb{Z}$ и $b \in \mathbb{Z}_{\geqslant 1}$.

Теперь пройдем по диаграмме (2.1) в обратную сторону. Начнем с μ_n -расслоения на поверхности дель Пеццо $\pi_V\colon V\to B'$ со следующими свойствами: центральный слой $E_V=\pi_V^{-1}(o)$ является μ_n -минимальной поверхностью дель Пеццо такой, что

локус неподвижных точек для действия μ_n является неособой эллиптической кривой C_V , причем действие μ_n на проективизации нормального расслоения $\mathbb{P}(N_{C/V})$ тривиально. Раздуем кривую C_V и получим μ_n -расслоение на поверхности дель Пеццо $\pi_W \colon W \to B$ с центральным слоем $E_W + F_W$. Обозначим морфизм раздутия через $\tau \colon W \to V$. По предположению, μ_n поточечно фиксирует F_W . Рассмотрим морфизм факторизации $h \colon W \to Z$ по действию μ_n . Заметим, что h разветвлено в F_W и E_W накрывает $h(E_W) =: E$. Несложно проверить, что любая кривая, лежащая в E, является K_Z -отрицательной. Следовательно, существует морфизм стягивания $\psi \colon Z \to X$ на терминальное расслоение на поверхности дель Пеццо $\pi \colon X \to B$. Мы утверждаем, что точка $x_0 := \psi(E)$ неособа на X. Рассмотрим три случая.

- (i) d=3. Проверятся, что $E_W/\mu_3\simeq \mathbb{P}^2$ и f сдутие в неособую точку.
- (ii) d=2. Проверятся, что $E_W/\mu_4\simeq \mathbb{P}(1,1,2)$ и f морфизм, обратный к взвешенному раздутию неособой точки с весами (1,1,2).
- (iii) d=1. Проверятся, что $E_W/\mu_6\simeq \mathbb{P}(1,2,3)$ и f морфизм, обратный к взвешенному раздутию неособой точки с весами (1,2,3).

Мы готовы приступить к доказательству следующей теоремы.

ТЕОРЕМА 2.3. Рассмотрим неособое расслоение $\pi\colon X\to B\ni o$ на поверхности дель Пеццо над ростком кривой. Предположим, что его центральный слой $F=\pi^{-1}(o)$ нерационален. Тогда существует взаимно-однозначное соответствие между такими π и μ_n -расслоениями на поверхности дель Пеццо $\pi_V\colon V\to B$ со следующими свойствами:

- центральный слой $E_V = \pi_V^{-1}(o)$ является неособой μ_n -минимальной поверхностью дель Пеццо степени d,
- ullet локус неподвижных точек действия μ_n является неособой эллиптической кривой $C\subset E_V$,
- ullet действие μ_n на $\mathbb{P}(N_{C/V})$ тривиально.

Возможны три случая:

- (i) $d = 3, n = 3, E_V \simeq (w^3 = q_3(x, y, z)) \subset \mathbb{P}^3,$ $\mu_3 \colon w \mapsto \zeta_3 w, F \simeq (0 = q_3(x, y, z)) \subset \mathbb{P}^3;$
- (ii) $d = 2, n = 4, \quad E_V \simeq (w^2 = q_4(x, y) + z^4) \subset \mathbb{P}(1, 1, 1, 2),$ $\mu_4 \colon z \mapsto \sqrt{-1}z, \quad F \simeq (w^2 = q_4(x, y)) \subset \mathbb{P}(1, 1, 1, 2);$
- (iii) $d = 1, n = 6, \quad E_V \simeq (w^2 = z^3 + \alpha x^4 z + \beta x^6 + y^6) \subset \mathbb{P}(1, 1, 2, 3),$ $\mu_6 \colon y \mapsto \zeta_6 y, \, \alpha, \beta \in \mathbb{C}, \quad F \simeq (w^2 = z^3 + \alpha x^4 z + \beta x^6) \subset \mathbb{P}(1, 1, 2, 3).$

Доказательство. По предложению 1.3 имеем $d\leqslant 3$. Рассмотрим три случая: $d=-E_0^2=1,2,3$. Согласно [13; 4.57] имеем $\mathrm{mult}_{x_0}F=3,2,2,$ соответственно. Мы будем применять конструкцию 2.1.

 C лучай d=3. В обозначениях конструкции 2.1 пусть ψ — стандартное раздутие точки $x_0.$ Имеем

$$K_Z = \psi^* K_X + 2E, \qquad F_Z = \psi^* F - 3E$$

и $E\simeq \mathbb{P}^2$. По формуле присоединения $K_{F_Z}=\psi|_{F_Z}^*K_F-E|_{F_Z}$. Проверяется, что поверхность F_Z неособа. Проводя конструкцию 2.1, получаем неособое μ_3 -расслоение на кубические поверхности дель Пеццо $\pi_V\colon V\to B$ с неособым центральным слоем $E_V=\pi^{-1}(o)$. Действие группы μ_3 поточечно фиксирует неособую эллиптическую кривую $C_V\subset E_V$. Так как E_V является μ_3 -минимальной кубической

поверхностью дель Пеццо, можно применить классификацию [15; 6.5] и получить случай (i) теоремы.

Cлучай d=2. Согласно [13; 4.57] с точностью до аналитической замены координат в окрестности x_0 центральный слой $F\subset X$ дается уравнением

$$q_4(x,y) + w^2 = 0,$$

и $\operatorname{mult}_{x_0}q_4=4$. Раздуем $x_0\in X$ с весами (1,1,2) относительно координат $x,\,y,\,w$. Заметим, что раздутие с весами (1,1,1) ведет к ненормальной поверхности F_Z . Получаем

$$K_Z = \psi^* K_X + 3E, \qquad F_Z = \psi^* F - 4E,$$

где $E \simeq \mathbb{P}(1,1,2)$ и $F_Z = \psi_*^{-1} F$. Поверхность F_Z неособа, и Z имеет одну особую точку p типа (1/2)(1,1,1), которая соответствует вершине конуса E. Положим $C = E \cap F_Z$. Кривая C не проходит через p. Применим конструкцию 2.1. Можно проверить, что h разветвлено в двух точках $q_1, q_2 \in W$ таких, что $\{q_1, q_2\} = h^{-1}(p)$ и многообразие W неособо. Стягивая F_W и используя классификацию [15; 6.6], получаем случай (ii) теоремы.

Случай d=1. Согласно [13; 4.57] с точностью до аналитической замены координат в окрестности x_0 центральный слой $F\subset X$ дается уравнением

$$w^2 + z^3 + zq_4(x) + q_6(x) = 0,$$

где $\operatorname{mult}_{x_0}q_i\geqslant i$. Раздуем $x_0\in X$ с весами (1,2,3) относительно координат $x,\,z,\,w$. Получаем

$$K_Z = \psi^* K_X + 5E, \qquad F_Z = \psi^* F - 6E,$$

где $E \simeq \mathbb{P}(1,2,3)$. Заметим, что поверхность F_Z неособа.

Легко видеть, что многообразие Z имеет две особые точки p_1 и p_2 типа (1/2)(1,1,1) и (1/3)(1,1,2). Они соответствуют особым точкам поверхности E. Положим $C = E \cap F_Z$. Кривая C не проходит через p_1 , p_2 . Можно проверить, что h разветвлено в прообразах p_1 и p_2 и что многообразие W неособо. Стягивая F_W и используя классификацию [15; 6.7], получаем случай (iii) теоремы. Доказательство закончено.

3. Обыкновенные двойные точки. Пусть расслоение на поверхности дель Пеццо $\pi\colon X\to B\ni o$ над ростком кривой имеет особенности, локально аналитически изоморфные $(xy+zt=0)\subset\mathbb{C}^4$. Такие точки называются обыкновенными двойными. По замечанию 1.2 любой слой π приведен и неприводим. Если центральный слой $F=\pi^{-1}(o)$ нерационален, то он является нормальной горенштейновой поверхностью дель Пеццо с одной простой эллиптической особенностью $x_0\in F$, см. [2].

ПРЕДЛОЖЕНИЕ 3.1. Рассмотрим расслоение $\pi\colon X\to B\ni o$ на поверхности дель Пеццо над ростком кривой. Пусть X имеет особенности не хуже, чем обыкновенные двойные точки. Предположим, что центральный слой $F=\pi^{-1}(o)$ нерационален и что X имеет особенность, содержащуюся в F. Тогда F является обобщенным конусом над эллиптической кривой и степень $d=K_F^2$ равна либо 1, либо 4.

Доказательство. Первое утверждение следует из классификации [2]. Так как F является дивизором Картье, X имеет единственную особую точку x_0 , принадлежащую F. Рассмотрим стандартное разрешение $\psi\colon Z\to X$ обыкновенной двойной точки x_0 . Исключительный дивизор E изоморфен $\mathbb{P}^1\times\mathbb{P}^1$. Имеем

$$K_Z = \psi^* K_X + E, \qquad F_Z = \psi^* F - nE, \qquad K_{F_Z} = \psi|_{F_Z}^* K_F - (n-1)E|_{F_Z},$$

где $n \geqslant 1$. Рассмотрим два случая: $n \geqslant 2$ и n = 1.

Cлучай $n\geqslant 2$. Утверждается, что тогда n=2 и F_Z неособо. Заметим, что все исключительные дивизоры для морфизма $\psi|_{F_Z}$ имеют целые и отрицательные дискрепантности. Рассмотрим нормализацию $\nu\colon \overline{F_Z}\to F_Z$. Тогда дискрепантности для $\nu\circ\psi|_{F_Z}$ также будут целыми и отрицательными. Так как поверхность F имеет одну простую эллиптическую особенность, любой дивизор на $\overline{F_Z}$, имеющий отрицательную дискрепантность, появляется на минимальном разрешении $\phi\colon T\to F$. Но существует лишь один ϕ -исключительный дивизор E_0 . Его дискрепантность равна -1. Поэтому существует единственный $\nu\circ\psi|_{F_Z}$ -исключительный дивизор на $\overline{F_Z}$ и морфизм ν крепантен. Следовательно, поверхность F_Z нормальна, кривая $E|_{F_Z}$ приведена, и F_Z доминируется поверхностью T. Значит, F_Z неособа и n=2. Более того, $E\cap F_Z=:C$ является неособой эллиптической кривой. Заметим, что на E эта кривая имеет бистепень (2,2). Несложно вычислить, что в этом случае d=4.

Случай n=1. Тогда $F_Z=\psi^*F-E$ и $F_Z|_E=-E|_E$. Таким образом, кривая $E\cap F_Z$ имеет бистепень (1,1) на E. В частности, $E\cap F_Z$ приведена. Следовательно, поверхность F_Z нормальна. Кроме того, $E\cap F_Z$ приводима. Действительно, иначе поверхность F_Z неособа, но любое разрешение F обязано содержать нерациональную исключительную кривую. Поэтому $E\cap F_Z$ является объединением двух пересекающихся прямых L_1 и L_2 . Точка p их пересечения особа на F_Z . Морфизм $\psi|_{F_Z}$ крепантен: $K_{F_Z}=\psi|_{F_Z}^*K_F$. Рассмотрим минимальное разрешение $\chi\colon \widetilde F\to F_Z$ и коммутативную диаграмму

$$F_{Z} \stackrel{\chi}{\longleftarrow} \widetilde{F} \tag{3.1} \quad \{\text{eq3.} \\ \psi|_{F_{Z}} \bigvee_{\phi} \bigvee_{\gamma} \eta \\ F \stackrel{\phi}{\longleftarrow} T$$

Морфизм η существует, так как ϕ – минимальное разрешение.

ЛЕММА 3.2. Точка p – простая эллиптическая особенность на F_Z , а морфизм η является сдутием (-1)-кривых $\chi_*^{-1}L_1$ и $\chi_*^{-1}L_2$.

Доказательство. Предположим, что существует χ -исключительная кривая E', такая что $E' \neq \widetilde{E}_0 := \eta_*^{-1} E_0$. Поскольку дивизор $\chi^{-1}(p)$ связен, можем предполагать, что E' пересекает \widetilde{E}_0 . Проверяется, что χ крепантен во всех χ -исключительных кривых за исключением \widetilde{E}_0 (так как T содержит единственный ϕ -исключительный дивизор E_0 с отрицательной дискрепантностью). Так как $K_{\widetilde{F}}$ является χ -численно эффективным, имеем

$$0 \leqslant K_{\widetilde{F}} \cdot E' = (\chi^* \psi|_{F_Z}^* K_F - \widetilde{E}_0) \cdot E' = -\widetilde{E}_0 \cdot E' \leqslant 0.$$

Следовательно, E' не пересекает \widetilde{E}_0 . Полученное противоречие показывает, что \widetilde{E}_0 – единственная χ -исключительная кривая. Она доминирует $E_0 \subset T$, поэтому это

неособая эллиптическая кривая. Ясно, что $\chi_*^{-1}L_1$ и $\chi_*^{-1}L_2$ являются непересекающимися (-1)-кривыми. Доказательство леммы закончено.

Далее, имеем

$$K_{\widetilde{F}} = \chi^* \psi |_{F_Z}^* K_F - \widetilde{E}_0.$$

Отсюда $K_{\widetilde{F}}^2=d+\widetilde{E}_0^2$. По формуле Нётера $K_{\widetilde{F}}^2+\chi_{\mathrm{top}}(\widetilde{F})=0$. Здесь $\chi_{\mathrm{top}}(\widetilde{F})=2$, так как \widetilde{F} является раздутием двух точек на линейчатой поверхности T. Поэтому имеем $K_{\widetilde{F}}^2=-2$ и $-\widetilde{E}_0^2=d+2$. Согласно [13; 4.57] имеем, что $-\widetilde{E}_0^2$ не превосходит размерности касательного пространства в точке p к многообразию Z. Эта размерность равна 3, так как Z неособо. Тогда $d+2\leqslant 3$, откуда d=1 и $E_0^2=-1$.

Мы готовы приступить к доказательству следующей теоремы.

ТЕОРЕМА 3.3. Рассмотрим расслоение на поверхности дель Пеццо $\pi\colon X\to B\ni o$ над ростком кривой. Пусть X имеет особенности не хуже, чем обыкновенные двойные точки. Предположим, что центральный слой $F=\pi^{-1}(o)$ нерационален и что X имеет особенность, содержащуюся в F. Тогда существует взаимно-однозначное соответствие между такими π и (аналитическими и слабыми в случае (ii)) μ_n -расслоениями на поверхности дель Пеццо $\pi_V\colon V\to B$ со следующими свойствами:

- центральный слой $E_V = \pi_V^{-1}(o)$ является неособой (слабой в случае (ii)) поверхностью дель Пеццо степени d с $\rho^{\mu_n}(E_V) = 2$,
- одномерный локус неподвижных точек действия μ_n является неособой эллиптической кривой $C \subset E_V$,
- ullet действие $oldsymbol{\mu}_n$ на $\mathbb{P}(N_{C/V})$ тривиально.

Возможны два случая:

- (i) $d = 4, n = 2, E_V$ имеет две структуры μ_2 -расслоения на коники,
- (ii) $d=1, n=4, E_V$ имеет μ_4 -инвариантную (-1)-кривую; помимо эллиптической кривой имеется одна изолированная μ_4 -неподвижная точка.

Доказательство. По предложению 3.1 достаточно рассмотреть два случая: d=1 и d=4.

Cлучай d=4. Мы используем обозначения предложения 3.1. Сделаем конструкцию замены базы, аналогичную 2.1. Мы построим следующую коммутативную диаграмму:

$$F_W + E_W \subset W \xrightarrow{h} Z \supset F_Z + 2E$$

$$\downarrow^{\tau} \qquad \qquad \psi \downarrow$$

$$E_V \subset V \qquad \qquad X \supset F$$

$$\downarrow^{\pi_V} \qquad \qquad \pi \downarrow$$

$$B' \xrightarrow{\alpha} B$$

$$(3.2) \quad \{eq3.$$

где $B'\simeq B,\ \alpha\colon t\mapsto t^2,\$ и W является нормализацией $Z\times_B B'.$ Как и в конструкции 2.1, проверяется, что W неособо, морфизм h разветвлен в $F_W:=h^{-1}(F_Z)$ и накрытие

$$h|_{E_W}: h^{-1}(E) =: E_W \to E$$

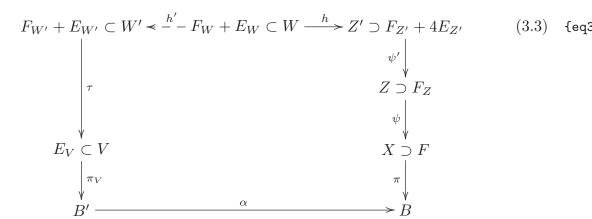
разветвлено в неособой эллиптической кривой $E \cap F_Z$. Группа Галуа μ_2 накрытия h действует на W. По формуле Гурвица поверхность E_W является квартикой дель Пеццо. Несложно проверить, что F_W может быть стянута на неособую эллиптическую кривую. Таким образом, получаем μ_2 -эквивариантный морфизм $\tau\colon W\to V$. Имеем μ_2 -расслоение на квартики дель Пеццо $\pi_V\colon V\to B$ с неособым центральным слоем E_V . Заметим, что $\rho^{\mu_2}(E_V)=2$, так как E_V имеет две структуры μ_2 -расслоения на коники.

Пусть теперь нам дано μ_2 -расслоение на поверхности дель Пеццо $\pi_V \colon V \to B$ степени 4 с условиями как в формулировке теоремы. Проверяется, что мы можем пройти по диаграмме в обратном направлении и получить расслоение на поверхности дель Пеццо $\pi \colon X \to B$ с нерациональным центральным слоем и обыкновенной двойной точкой в качестве особенности.

Случай d=1. Рассмотрим малое разрешение $\psi\colon Z\to X$ обыкновенной двойной точки $x_0\in X$. Здесь Z — неособое комплексное многообразие. Исключительным множеством морфизма ψ является кривая $L\simeq \mathbb{P}^1$. Как в лемме 3.2, проверяется, что F_Z имеет одну простую эллиптическую особенность, обозначим ее через $z_0\in F_Z\subset Z$. Рассуждая как в лемме 3.2, получаем, что индекс самопересечения исключительной эллиптической кривой равен -2. Рассмотрим раздутие $\psi'\colon Z'\to Z$ точки z_0 с весами (1,1,2). Из [13;4.57] следует, что $F_{Z'}=\psi'^{-1}_*F_Z$ является минимальным разрешением для F_Z . Имеем

$$K_{Z'} = \psi'^* K_Z + 3E', \qquad F_{Z'} = \psi'^* F_Z - 4E', \qquad K_{F_{Z'}} = \psi'|_{F_{Z'}}^* K_{F_Z} - E'|_{F_{Z'}},$$

где $E'\simeq \mathbb{P}(1,1,2)$ и $F_{Z'}=\psi_*'^{-1}F_Z$. Заметим, что Z' имеет единственную особенность типа (1/2)(1,1,1) и что линейчатая поверхность $F_{Z'}$ имеет один приводимый слой. Мы построим следующую коммутативную диаграмму



где $B'\simeq B,\ \alpha\colon t\mapsto t^4,\$ и W является нормализацией $Z\times_B B'.$ Как и в предыдущем случае, многообразие W неособо, морфизм h разветвлен в $F_W:=h^{-1}(F_Z)$ и накрытие $h|_{E_W}$ разветвлено в неособой эллиптической кривой $E_W\cap F_W,$ где $E_W:=h^{-1}(E_{Z'}).$ Группа Галуа μ_4 накрытия h действует на многообразии W, и центральный слой $\pi_W^{-1}(o)=F_W+E_W$ приведен. По формуле Гурвица E_W является поверхностью дель Пеццо степени 2. Проверяется, что E_W неособа. Заметим, что линейчатая поверхность $F_W\simeq F_{Z'}$ имеет один приводимый слой $f'_W=f_1+f_2.$ Обе компоненты f_1 и f_2 являются (-1)-кривыми на $F_W.$ Без ограничения общности предположим, что f_1 пересекает эллиптическую кривую $C_W:=F_W\cap E_W.$

892 К. В. ЛОГИНОВ

Сделаем флоп h' в кривой f_1 . Мы используем конструкцию флопа Атьи–Куликова, см. например, [16; 4.2]. Получим многообразие W' с центральным слоем

$$E_{W'} + F_{W'}$$

где $E_{W'}$ и $F_{W'}$ — собственные прообразы E_W и F_W соответственно, $E_{W'}$ является раздутием точки на E_W , а F_W' получается сдутием кривой f_1 на F_W . Заметим, что $E_{W'}$ — неособая слабая (т.е., $-K_{E_{W'}}$ численно эффективен и обилен) поверхность дель Пеццо степени 1. Поверхность $F_{W'}$ линейчата и может быть стянута на неособую эллиптическую кривую. В итоге получаем μ_4 -расслоение $\pi_V \colon V \to B$ на поверхности дель Пеццо степени 1.

Пусть теперь нам дано μ_4 -расслоение на поверхности дель Пеццо $\pi_V \colon V \to B$ степени 1 с условиями как формулировке теоремы. Проверяется, что мы можем пройти по диаграмме в обратном направлении и получить расслоение на поверхности дель Пеццо $\pi \colon X \to B$ с нерациональным центральным слоем и обыкновенной двойной точкой в качестве особенности.

Автор выражает благодарность Ю.Г. Прохорову за многочисленные полезные обсуждения, А.Г. Кузнецову, Д.А. Минееву и К.А. Шрамову за ценные комментарии, Дж. Бланку за постановку вопроса 1.6, а также рецензенту за замечания, касающиеся теоремы 3.3.

СПИСОК ЦИТИРОВАННОЙ ЛИТЕРАТУРЫ

- [1] V. A. Iskovskikh, Yu. G. Prokhorov, *Algebraic Geometry. V. Fano Varieties*, Encyclopaedia Math. Sci., **47**, Springer-Verlag, Berlin, 1999.
- [2] F. Hidaka, K. Watanabe, "Normal Gorenstein surfaces with ample anti-canonical divisor", *Tokyo J. Math.*, **04**:2 (1981), 319–330.
- [3] S. Mori, Yu. G. Prokhorov, "Multiple Fibers of del Pezzo Fibrations", *Многомерная алгебраическая геометрия*, Тр. МИАН, **264**, МАИК «Наука/Интерпериодика», М., 2009, 137–151.
- [4] M. Kontsevich, Yu. Tschinkel, Specialization of Birational Types, 2017, arXiv: 1708.05699.
- [5] B. Totaro, "Rationality does not specialise among terminal varieties", *Math. Proc. Cambridge Philos. Soc.*, **161**:1 (2016), 13–15.
- [6] A. Perry, "Rationality does not specialize among terminal fourfolds", *Algebra Number Theory*, **11**:9 (2017), 2193–2196.
- [7] T. Fujisawa, "On non-rational numerical del Pezzo surfaces", Osaka J. Math., **32**:3 (1995), 613–636.
- [8] K. Matsuki, Introduction to the Mori Program, Springer, New York, 2002.
- [9] Y. Kawamata, K. Matsuda, K. Matsuki, "Introduction to the minimal model problem", Algebraic Geometry, Sendai, 1985, Adv. Stud. Pure Math., 10, North-Holland, Amsterdam, 1987, 283–360.
- [10] Y. Kawamata, "Crepant blowing-up of 3-dimensional canonical singularities and its application to degenerations of surfaces", Ann. of Math. (2), 127:1 (1988), 93–163.
- [11] M. Reid, "Nonnormal del Pezzo surfaces", Publ. Res. Inst. Math. Sci., **30**:5 (1994), 695–727.
- [12] M. Abe, M. Furushima, "On non-normal del Pezzo surfaces", Math. Nachr., 260 (2003), 3–13.
- [13] J. Kollár, Sh. Mori, Birational Geometry of Algebraic Varieties, Cambridge Tracts in Math., 134, Cambridge Univ. Press, Cambridge, 1998.

- [14] J. Kollár, Singularities of the Minimal Model Program, Cambridge Tracts in Math., 200, Cambridge Univ. Press, Cambridge, 2013.
- [15] I. V. Dolgachev, V. A. Iskovskikh, "Finite subgroups of the plane Cremona group", *Algebra*, *Arithmetic*, *and Geometry*, Progr. Math., **269**, Birkhäuser Boston, Boston, MA, 2009, 443–548.
- [16] Вик. С. Куликов, "Вырождения K3 поверхностей и поверхностей Энриквеса", Из6. $AH\ CCCP.\ Cep.\ матем.$, 41:5 (1977), 1008–1042.

К.В. Логинов Лаборатория алгебраической геометрии и ее приложений, Национальный исследовательский университет «Высшая школа экономики», г. Москва

E-mail: kostyaloginov@gmail.com

Поступило 20.11.2018 Принята к публикации 20.03.2019